Most efficient quantum thermoelectric at finite power output.
نویسنده
چکیده
Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems, heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.
منابع مشابه
Performance analysis of an interacting quantum dot thermoelectric setup
In the absence of phonon contribution, a weakly coupled single orbital noninteracting quantum dot thermoelectric setup is known to operate reversibly as a Carnot engine. This reversible operation, however, occurs only in the ideal case of vanishing coupling to the contacts, wherein the transmission function is delta shaped, and under open-circuit conditions, where no electrical power is extract...
متن کاملEffect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)
Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...
متن کاملStaircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power
The performance of thermoelectric energy harvesters can be improved by nanostructures that exploit inelastic transport processes. One prototype is the three-terminal hopping thermoelectric device where electron hopping between quantum-dots are driven by hot phonons. Such three-terminal hopping thermoelectric devices have potential in achieving high efficiency or power via inelastic transport an...
متن کاملExperimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with an Elliptical Pin-Fin Heat Sink
A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Althoug...
متن کاملThermoelectric energy conversion using nanostructured materials
High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics of lowand mid-temperature thermoelectric materials. We show that as long as an appreciable temperature difference can be created over a short thermoelectric leg, good pow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 112 13 شماره
صفحات -
تاریخ انتشار 2014